Taming the beast: Free and open-source massive point cloud web visualization

Massive Point Clouds for eSciences http://pointclouds.nl

Oscar Martinez-Rubi Stefan Verhoeven Maarten van Meersbergen Markus Schütz Peter van Oosterom Romulo Gonçalves Theo Tijssen

Capturing Reality 2015 24 November 2015 Salzburg, Austria

netherlands

by SURF & NWO

Netherlands eScience Center

To reinforce and accelerate <u>multi-disciplinary</u> and <u>data-intensive</u> research in the Netherlands by developing and applying eScience and by combining forces.

enhanced Science is about promoting new scientific breakthroughs and innovation by bridging scientific disciplines via ICT

Optimizing Discovery in the Big Data Era

Massive Point Clouds for eSciences

2 year Netherlands eScience research project on massive point clouds

TU Delft:

- GIS technology
- TU Delft, Library
- 3TU.Datacentrum
- TU Delft Shared Service Center ICT
- Netherlands eScience Center
- Oracle Spatial and Graph, New England Development Centre (USA)
- Rijkswaterstaat
- Fugro
- CWI, MonetDB

Rijkswaterstaat Ministerie van Infrastructuur en Milieu

Use case / test data set: AHN2

- NL surface
- 6 -10 pts/m² -> 640 billion pts
- 60,185 LAZ files, **987 GB**/11.64 TB
- (X, Y, Z) only

Point Cloud Data Management Systems (PCDMS)

Storage model	Pro	Con
DB blocks PostgreSQL Oracle PDAL	 Storage (compression, lazperf) Scaling DB functionalities Complex queries PDAL queries (lazperf ~ LAStools/LAZ) 	 Loading (make blocks) Block overhead in queries (noticeable in simple queries) Not native parallel PDAL queries with many wasted points for large queries PDAL not parallel
DB flat MonetDB Oracle PostgreSQL	 Faster loading DB functionalities Dynamic schema Simple queries Native parallelization (not PostgreSQL) Promising SFC (scaling) 	 Storage (except Exadata) Not scaling (except Exadata, MonetDB, SFC) Indexing (except Exadata)
File-based LAStools	 Storage (LAZ) Data preparation Best for simple queries (LAS) 	 LAZ queries 1 order of magnitude slower Limited functionalities Fixed schema (LAS) Scaling requires DB help Not efficient parallel

More information:

- Peter van Oosterom et al. Massive point cloud data management: Design, implementation and execution of a point cloud benchmark. Computers and Graphics, 2015
- Oscar Martinez-Rubi et al. Benchmarking and improving point cloud data management in MonetDB. SIGSPATIAL Special 6, 11–18, 2015
- Romulo Gonçalves et al. A new generation of Point Cloud Data Management Systems. Capturing Reality 2015 (M4) 2015/11/24 14:00

Point cloud visualization

- Existing PCDMS's aim at analytic purposes
- Existing PCDMS's not efficient LoD support
- Visualization solutions:

Point cloud visualization

- Specific data management solutions for visualization
 - Large point clouds \rightarrow Multi-resolution data structures (quadtree, octree, kd-tree, etc.)

- Many **desktop-based** solutions (and some really cool and efficient)
- WebGL → new point cloud web renderers (FOSS: Potree and Plasio)
- Massive point clouds \rightarrow Bottleneck: expensive creation multi-resolution data structures

Potree

- Developed by Markus Schütz
- Web renderer for large point clouds (WebGL / three.js)
- Modern web browsers (no plugins required): Chrome, Firefox, Safari, Edge
- Client-side application (server "only" hosts files)
- Requires data re-organization: **PotreeConverter (LAZ, LAS or BINARY)**
- **Do not load full data**: Low-resolution data when far and gradually higher resolution data when closer
- **Color** on RGB, classification, elevation, etc.
- 4 **point rendering modes**: squares, circles, interpolation and splats
- 3 point sizes modes: fixed, attenuated and adaptive
- Eye-Dome-Lighting (EDL): illuminate point clouds without normal
- Measurements toolkit (distances, areas, height profiling)
- FOSS
- Based on InstantPoints (SCANOPY). Now under Harvest4D

PotreeConverter (2D simplification)

User-configurable parameters:

- *spacing*: distance points root (L0)
- *levels*: number of levels
- *aabb*: Cubic axis-aligned bounding box

View frustum culling and level of detail calculations

Massive point clouds

- AHN2 use case (NL, 640 billion points)
- PotreeConverter performance*: 250 million points / hour
 → AHN2 estimate: 100 days
- PotreeConverter is single-process
- IO-bonded
- Our solution: Massive-PotreeConverter
 - Divide and conquer approach
 - Exploits knowledge of spatial extents of octree nodes (also usable for other trees where nodes extent is independent of points)
 - Divides creation of massive octree into multiple independent tasks (creation of small octrees)
 - Tasks can run in multiple systems and cores
 - Small octrees are merged into massive octree
 - FOSS
 - <u>https://github.com/NLeSC/Massive-PotreeConverter</u>

*HP DL380p Gen8 server with 128 GB RAM and 2 x 8 Intel Xeon processors E5-2690 at 2.9 GHz, 2 x 41 TB SATA 7200 rpm in RAID 5 configuration

Massive-PotreeConverter (2D simpl.)

Massive-PotreeConverter (2D simpl.)

Potree.org

AHN2 conversion

1.6 TB

- No objects/terrain separation
- 1.6 TB

netherlands

Potree.org

AHN2 conversion

level	#files	files_fact	#points	points_fact
0	1		34,045	
1	4	4,00	134,786	3,96
2	14	3,50	541,973	4,02
3	41	2,93	2,205,484	4,07
4	143	3,49	8,833,283	4,01
5	499	3,49	36,081,908	4,08
6	1,804	3,62	155,411,383	4,31
7	6,767	3,75	668,597,511	4,30
8	25,939	3,83	2,834,989,373	4,24
9	101,057	3,90	11,355,433,955	4,01
10	398,423	3,94	39,911,483,676	3,51
11	1,584,598	3,98	112,993,998,398	2,83
12	6,671,815	4,21	259,014,500,658	2,29
13	29,442,790	4,41	170,207,571,211	0,66
Total	38,233,895		597,189,817,644	

AHN2 web viewer and download tool

http://ahn2.pointclouds.nl

AHN2 web viewer and download tool

- 4 quality options: low, standard, high and ultra
- 2 navigation modes: GoogleEarth-like and keyboard interaction
- Geographic name search bar (Bing Geocoding service converts names to coordinates)
- 2D orientation **minimap** (3D field-of-view depiction)
- Height coloring configuration
- **Demo mode** (download/upload demo paths)
- Speed control
- **Potree features**: Measurement toolkit, color by other attributes, etc.
- Multi-resolution download tool

Multi-resolution download tool

Conclusions and future work

- D&C algorithm for creating massive multi-resolution data structures suitable for visualization
- **FOSS** implementation for Potree/PotreeConverter (octree)
 - \rightarrow Massive-PotreeConverter
- Used for AHN2 → public web service (<u>http://ahn2.pointclouds.nl</u>)
- **Proof-of-Principle** massive point clouds can be web-visualized with FOSS
- Future work:
 - Add time (AHN2-AHN3)
 - Mix with **imagery** tiles to get color (beta)
 - Trees with all points (current PotreeConverter drops too-close points → SOLVED!)
 - Handle **millions** octree nodes/**files** (key-value stores, HTTP Range Retrieval Requests, etc.)
 - **OpenPointCloudMap**: More countries \rightarrow all planet, flexible to add/update point clouds
 - Synchronize efforts with standardization ones (OGC-PC-DWG), OSGEO PointDown
 - Integration Potree/MassivePotreeConverter with PDAL/Plasio/Entwine/Greyhound
 - nD-PointCloud (submitted H2020 FET Open): <u>http://nd-pc.org</u>

Thank you for your attention

