
Databases for Massive Point Clouds

Peter van Oosterom (TUD), Oscar Martinez Rubi (NLeSc), 

Theo Tijssen (TUD), Mike Horhammer (Oracle) , Milena Ivanova 

(NLeSc), Romulo Goncalves (NLeSC)

SPAR Europe 2014, Amsterdam, The Netherlands

8-10 December 2014

Massive Point Clouds for eSciences
http://pointclouds.nl



Netherlands eScience Center = enhanced Science

To reinforce and accelerate multi-disciplinary and data-intensive research in the Netherlands by 
developing and applying eScience and by combining forces.

enhanced Science is about promoting new scientific breakthroughs 
and innovation by bridging scientific disciplines via ICT

Optimizing Discovery in the Big Data Era



NLeSC: Innovation with ICT

Bridging the gap between Science and ICT

Bridging the gap between academic and commercial research



Content overview

1. Introduction

2. Conceptual benchmark

3. Executable benchmark

4. Data organization

5. Conclusion



Introduction
• Collection of point cloud data grows rapidly

• Many new applications now economically viable

• Relevant use cases in GIS: 
• Digital elevation model of terrains

• 3D models of urban environment

• Flood risk management

• Dike monitoring (NL) 

• Forest mapping

• Requiring new techniques for
• Managing massive datasets

• Integrating various kinds of data

• Other potential applications:
• 3D models of manufactured parts

• Visualization, animation, rendering

• Medical imaging

• Industrial metrology

Usually rasterized to be usable 

Sitting on a gold mine, but not exploiting it!



Introduction

• TU Delft:
• GIS technology

• TU Delft, Library, contact with research & education 
users, dissemination & disclosure of point cloud data

• 3TU.Datacentrum, Long-term provision of ICT-infra

• TU Delft Shared Service Center ICT, storage facilities

• NL eScience Center, designing and building 
ICT infrastructure 

• Oracle spatial, New England Development 
Centre (USA), improving existing software

• Rijkswaterstaat, data owner (and in-house 
applications)

• Fugro, point cloud data producer

• CWI, MonetDB group 

2 year Netherlands eScience research project on Massive Point Clouds

Image courtesy of: PDOK, NL



Introduction

• Covering surface of the entire country
• 6 -10 pts/m2 -> 640 billion pts

• 60,185 LAZ files, 987 GB/11.64 TB

• (X, Y, Z) only

• “Future”
• AHN3 higher resolution

• Cyclorama-based photogrammetric 
datasets (50x  AHN2, and with RGB)

Project motivation: Actual Height Model of the Netherlands (AHN2)



Introduction

• Develop infrastructure for the storage, the management, … 
of massive point clouds (note: no object reconstruction)

• Support range of hardware platforms: normal/ department servers 
(HP), cloud-based solution (MS Azure), Exadata (Oracle)

• Scalable solution: if data sets becomes 100 times larger and/or if we 
get 1000 times more users (queries), it should be possible to 
configure based on same architecture

• Generic, i.e. also support other (geo-)data and standards based, if 
non-existent, then propose new standard to ISO (TC211/OGC): Web 
Point Cloud Service (WPCS) 

• Explore standardization at SQL level (SQL/SFS, SQL/raster, SQL/PC)?

Project goals



Introduction

• Based on structured interviews:

• Government community: RWS (Ministry)

• Commercial community: Fugro (company)

• Scientific community: TU Delft Library

• Report at MPC public website http://pointclouds.nl

• Basis for conceptual benchmark:

• Tests for functionality

• Classified by importance

Evaluation of user requirements



• Common practice: specific file format (LAS, LAZ, ZLAS,…) with specific 
tools / libraries

• Point clouds data similar to raster data: 
sampling nature, huge volumes, relatively static

• Missing features in specific file-based point cloud data management 
systems:

• Multi-user (access and some update)

• Scalability (not nice to process thousands/millions files)

• Data integration (types: vector, raster, admin)

• Online availability

• “work around” could be developed -> re-build DBMS

• No reason why point clouds can not be supported efficiently in DBMS

• Suggestion: “mix” both: use file (or GPU) format for the PC blocks

Introduction
Why a DBMS?



Content overview

1. Introduction

2. Conceptual benchmark

3. Executable benchmark

4. Data organization

5. Conclusion



Conceptual benchmark

1. simple range/rectangle filters (of various sizes)  -> 10
2. selections based on points along a linear route (with buffer) -> 8
3. selections of points overlapping a 2D polygon -> 9
4. selections based on the attributes such as intensity I (/RGB) -> 8
5. multi-resolution/LoD selection (select top x%) -> 8, compute imp
6. sort points on relevance/importance (support streaming) -> 7
7. slope orientation or steepness computation -> 3

SQL query types / functionality

..
.

32. delta selection of query 31, moving to new position -> 6



• mini-benchmark, small subset of data 

(20 million = 20.000.000) + limited functionality

• get experience with benchmarking, platforms

• first setting for tuning parameters: block size, compression.

• medium-benchmark, various subsets with different sizes 

(up to 20 billion = 20.000.000.000) + more functionality

• more serious testing, first feeling for scalability

• more and different types of queries (e.g. nearest neighbour)

• full-benchmark, full AHN2 data set 

(640 billion = 640.000.000.000) + yet more functionality

• LoD (multi-scale), multi-user test

• scaled-up benchmark, replicated data set 

(20 trillion = 20.000.000.000.000) 

• stress test

Conceptual benchmark
Benchmark organization



Dataset 
name

Benchmark Points Files Format Disk size 
[GB]

Area 
[km2]

Description

20M Mini/Medium 20,165,862 1 LAS 0.4 1.25 TU Delft campus

210M Medium 210,631,597 16 LAS 4.0 11.25 Major part of Delft city

2201M Medium 2,201,135,689 153 LAS 42.0 125 City of Delft and surroundings

23090M Medium 23,090,482,455 1,492 LAS 440.4 2,000 Major part of Zuid-Holland province

639478M Full 639,478,217,460 60,185 LAZ 987.0* 40,000 The Netherlands

Conceptual benchmark
Tested data: AHN2 (subsets)



HP DL380p Gen8 server

• HP DL380p Gen8 server

• 2 x 8-core Intel Xeon processors, E5-2690 at 2.9 GHz

• 128 GB main memory (DDR3)

• RHEL 6.5 operating system

• Disk storage – direct attached

• 400 GB SSD (internal)

• 6 TB SAS 15K rpm in RAID 5 configuration (internal)

• 2 x 41 TB SATA 7200 rpm in RAID-5 configuration
(external in 4U rack 'Yotta-III' box, 24 disks)

“normal” server hardware configuration



Exadata X4-2

• Database Grid: multiple Intel cores, computations
Eight, quarter, half, full rack with resp. 24, 48, 96, 192 cores

• Storage servers: multiple Intel cores, massive parallel smart 
scans (predicate filtering, less data transfer, better performance)

• Hybrid columnar compression (HCC): query and archive modes

Oracle SUN hardware for Oracle database software

“DBMS counterpart of 
GPU for graphics”



Content overview

1. Introduction

2. Conceptual benchmark

3. Executable benchmark

4. Data organization

5. Conclusion



• Oracle 

• Blocks 

(native PointCloud support)

• Flat table

• PostgreSQL

• Blocks 

(PointCloud extension)

• Flat table

• LASTools

• MonetDB

Flat table (column-store)

Executable benchmark
Point cloud data management systems 



• Load small AHN2 dataset 20M 
(20.165.862 XYZ points)

• X, Y, Z

• Management systems:
• PointCloud (blocks) solutions in Oracle and 

PostgreSQL

no compression, block size 5000, one thread

• Flat tables: Oracle, PostgreSQL and MonetDB

1 point (x,y,z) per row. 

• Oracle:  Btree

• PostgreSQL: GiST

• MonetDB: Imprints

• LAStools (file, no database, tools from 
rapidlasso, Martin Isenburg)

• 7 queries

Executable benchmark
mini-benchmark



• Block size: 300, 500, 1000, 3000 and 5000 points

• Compression:
• Oracle blocks: none, medium and high

• PostgreSQL blocks: none, dimensional

• Conclusions (most the same for PostgreSQL, Oracle):
• Compression about factor 2 to 3 (not as good as LAZ/ZLAS: 10)

• Load time and storage size are linear to size datasets 

• Query time not much different: data size / compression (max 10%)

• Oracle medium and high compression score equal

• Oracle load gets slow for small block size 300-500

Executable benchmark
Additional initial tests. Example: block sizes and compression



• Four datasets: 20M, 210M, 2201M, 23090M

• X, Y, Z

• Best known loading strategies (parallel out-core)

• Best known configuration (block sizes)

• Use compression

• LAStools needs help when scaling

• Compare with Exadata (diff. Hardware)

• 20 queries (parallel, out-core when not native) 

Executable benchmark
Medium benchmark



Executable benchmark
Medium benchmark: Loading of 23090M points

0,33 0,12

1,65

0,51

3,30
2,54

1,46

0,24

2,72

14,09

9,71

22,71

0,00

5,00

10,00

15,00

20,00

25,00

Oracle blocks
global

Oracle blocks
global compress

Oracle blocks
increm.

Oracle blocks
increm.

compress

PostgreSQL
blocks increm.

PostgreSQL
blocks increm.

compress

Oracle flat PostgreSQL flat MonetDB LAStools LAStools LAZ Oracle Exadata

Loading [Mpts/s]



Executable benchmark
Medium benchmark: Storage of 23090M points

32,99

104,91

32,99

104,91
115,45

216,20

23,16
12,97

43,62 52,42

647,28

223,80

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

Oracle blocks
global

Oracle blocks
global compress

Oracle blocks
increm.

Oracle blocks
increm.

compress

PostgreSQL
blocks increm.

PostgreSQL
blocks increm.

compress

Oracle flat PostgreSQL flat MonetDB LAStools LAStools LAZ Oracle Exadata

Storage [Mpts/GB]



Rectangle 51x53 m, 0.0027 km2, ~74872 
points

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

Oracle blocks
global

Oracle blocks
global

compress

Oracle blocks
increm.

Oracle blocks
increm.

compress

PostgreSQL
blocks increm.

PostgreSQL
blocks increm.

compress

Oracle flat PostgreSQL
flat

MonetDB LAStools LAStools LAZ Oracle
Exadata

Ti
m

e 
[s

]

Query #1 response time

Query 1 20M

Query 1 23090M

Executable benchmark
Medium benchmark: Queries - Q1 (20M and 23090M)



Complex Polygon, 792 pts, 0.025 km2, 
1 hole, ~387135 points

Executable benchmark
Medium benchmark: Queries – Q6 (20M and 23090M)

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

Oracle blocks
global

Oracle blocks
global

compress

Oracle blocks
increm.

Oracle blocks
increm.

compress

PostgreSQL
blocks increm.

PostgreSQL
blocks increm.

compress

Oracle flat PostgreSQL flat MonetDB LAStools LAStools LAZ Oracle Exadata

Ti
m

e 
[s

]

Query #6 response time

Query 6 20M

Query 6 23090M



system Total load 

time [hours]

Total 

size [TB]

#points 

LAStools unlic. 22:54 12.181 638,609,393,087

LAStools lic 16:47 11.617 638,609,393,101

LAStools lic LAZ 15:48 0.973 638,609,393,101

Oracle Exadata 4:39 2.240 639,478,217,460

MonetDB* 17:21 15.00 639,478,217,460

Executable benchmark
Full benchmark: loading AHN2



Executable benchmark

Storage model Pro Con

DB blocks • Storage (compression)
• Scaling
• Indexing
• DB functionalities
• Complex queries

• Loading (make blocks)
• Block overhead in queries 
(noticeable in simple queries)
• Not native parallel

DB flat • Faster loading/updating*
• DB functionalities
• Dynamic schema
• Simple queries
• Native parallelization (not 
PostgreSQL)

• Storage (except Exadata)
• Not scaling (except Exadata)
• Indexing (except Exadata)

File-based • Storage (LAZ)
• Data preparation
• Simple queries (if not LAZ)

• Limited functionalities
• Fixed schema (LAS)
• Scaling requires DB help
• Not efficient parallel



Content overview

1. Introduction

2. Conceptual benchmark

3. Executable benchmark

4. Data organization

5. Conclusion



Data organization
Querying current situation

0

1

2

3

4

5

6

7

8

20M 210M 2201M 23090M

Ti
m

e
[s

]

Query #1 (rectangle 51 x 53 m, ~74872 points)

PostgreSQL flat

Oracle flat

MonetDB flat

PostgreSQL blocks

Oracle blocks

LAStools



Data organization
Querying current situation

• Flat tables fast when small dataset but not scaling

• Blocks not so fast but “perfectly” scaling (better storage but need 
“blocks” processing in queries)

• What if we want DBMS with speed of small flat tables but good scaling?
• How can a flat table be organized efficiently?

• How can the point cloud blocks be created efficiently? 
(with no assumption on data organization in input)

• ANSWER: spatial clustering/coherence, e.g. quadtree/octree
(as obtained by Morton or Hilbert space filling curves) 



Data organization
Spatial clustering

• Reorder data based on spatial dimensions
• Efficiency in storage and queries

• Already used in:

• LAStools (lassort/lasindex)

• Oracle blocks (Data preparation in Hilbert R-Tree blocking)

• Space filling curves: Hilbert/Morton
• Useful for flat model directly 

• X, Y -> Code (position in the curve) No need to store X,Y!

• Can also be used in cases where point dimension is not per se spatial (x, y, z), but 
of different nature (t or vario-LoD/imp)

• Queries need to be re-written to use spatial clustering and be more efficient



Data organization
Faster flat tables

• compute Hilbert / Morton codes for all points

• create b-tree index on Hilbert / Morton code (position in the curve)

• cluster flat table on Hilbert / Morton curve

• re-write queries to select ranges of codes 

0        1       2       3     col

row

3

2

1

0
0

15

0        1       2       3     col

row

3

2

1

0
0

15

0        1       2       3     col

0 15

row

3

2

1

0

Row (first y, then x) PeanoHilbert

default of flat model

ALTERNATIVE: 



Data organization
Rewriting queries (Morton queries)

• Bitwise interleaving x-y coordinates

• Also works in higher dimensions (nD)

• Two example of Morton code:

000     001    010    011    100   101    110    111

0         1        2        3         4      5         6       7

X

111

7

110

6

101

5

100

4

011

3

010

2

001

1

000

0

Y

0

1

8

75

6

4

3

2

61

62

63

x= 110, y=111  xy= 111101 (decimal 61)

x= 001, y=010  xy= 000110 (decimal 6)



Data organization
Rewriting queries (Morton queries)

Quadcode 0: Morton range 0-15

Quadcode 10: Morton range 16-19

Quadcode 12: Morton range 24-27

Quadcode 300: Morton range 48-48

(Morton code gaps resp. 0, 4, 20)

query_geometry, polygon

Note : SW=0, NW=1, SE=2, NE=3

111

7

110

6

101

5

100

4

011

3

010

2

001

1

000

0

Y

0

12
300

10

000     001    010    011    100   101    110    111

0         1        2        3         4      5         6       7

X

• Based on concepts of Region Quadtree & Quadcodes

• Works for any type of query geometry

• Also works in 3D (Octree) and higher dimensions



Data organization
Rewriting queries (Morton queries)

CREATE TABLE query_results_1 AS ( 
SELECT x,y,z FROM ( 

SELECT x,y,z FROM ahn_flat WHERE (
(morton2D between 1341720113446912 and 1341720117641215)

OR (morton2D between 1341720126029824 and 1341720134418431) 
OR (morton2D between 1341720310579200 and 1341720314773503)
OR (morton2D between 1341720474157056 and 1341720478351359) 
OR (morton2D between 1341720482545664 and 1341720503517183) 
OR (morton2D between 1341720671289344 and 1341720675483647) 
OR (morton2D between 1341720679677952 and 1341720683872255))   

) a WHERE (x between 85670.0 and 85721.0) 
and (y between 446416.0 and 446469.0));



Data organization
Rewriting queries (Morton queries)

0

1

2

3

4

5

6

20M 210M 2201M 23090M

Ti
m

e
[s

]

Query #1 (rectangle 51 x 53 m, 74872 points)

PostgreSQL

PostgreSQL Morton

0

1

2

3

4

5

6

20M 210M 2201M 23090M

Ti
m

e
[s

]

MonetDB

MonetDB Morton



Content overview

1. Introduction

2. Conceptual benchmark

3. Executable benchmark

4. Data organization

5. Conclusion



• Very innovative and risky project

• No solutions available today (big players active; e.g. Google with 
street view also collects point clouds, but has not be able to serve these data to 
users)

• Intermediate results: significant steps forward (explicit requirements, 
benchmark, improved products,…)

• Direct contact with developers: Oracle, but also MonetDB, PostgreSQL/PostGIS, 
LAStools,…

• Standardization: discussions started (ISO, OGC)

• Concepts developed for Multi-/vario-scale point clouds (LoD’s, data pyramid)

• parallel query algorithms

Summary



• Full and scaled-up benchmarking

• Web-based viewer (WebGL, LoD-tiles, Fugro prototype)

• Model for operational service (for University users)

• Ambitious project plan, further increased:

• MonetDB

• LAStools (and Esri’s ZLAS format)

• Patty project

• Via Apia project

• More data management platforms (optional):

• SpatialHadoop

• MS Azure data intensive cloud (announced last week)/MS SQL server 

• GeolinQ (layered solution with bathymetric/hydrographics roots

• More data?

• Cyclomedia images / areal photographs

• Very high density, prediction 35 trillion points for NL

• More attributes (r,g,b) -> 100 times more data than full AHN2

Next phases of project



• Possible topics:

• Different types of hardware/software solutions for point cloud data management 
(e.g. SpatialHadoop, or LAStools/Esri format tools)

• Next to multiple-LoD's (data pyramid), explore true vario-scale LoD's

• Advanced functionality (outside our current scope): surface/ volume reconstruction, 
temporal difference queries, etc.

• Higher dimensional point clouds, storing, structuring point clouds as 4D, 5D, 6D, etc 
points (instead of 3D point with a number of attributes), explore advantages and 
disadvantages

• Partners (Fugro, RWS or Oracle) most likely interested

• Also interest form others (Cyclomedia, MonetDB)

Future topics (beyond project)



Thank you!


